Abstract

Regulation of bacterial iron homeostasis is often controlled by the iron-sensing ferric uptake repressor (Fur). The Bacillus subtilis Fur protein acts as an iron-dependent repressor for siderophore biosynthesis and iron transport proteins. Here, we demonstrate that Fur also coordinates an iron-sparing response that acts to repress the expression of iron-rich proteins when iron is limiting. When Fur is inactive, numerous iron-containing proteins are down-regulated, including succinate dehydrogenase, aconitase, cytochromes, and biosynthetic enzymes for heme, cysteine, and branched chain amino acids. As a result, a fur mutant grows slowly in a variety of nutrient conditions. Depending on the growth medium, rapid growth can be restored by mutations in one or more of the molecular effectors of the iron-sparing response. These effectors include the products of three Fur-regulated operons that encode a small RNA (FsrA) and three small, basic proteins (FbpA, FbpB, and FbpC). Extensive complementarity between FsrA and the leader region of the succinate dehydrogenase operon is consistent with an RNA-mediated translational repression mechanism for this target. Thus, iron deprivation in B. subtilis activates pathways to remodel the proteome to preserve iron for the most critical cellular functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.