Abstract

AbstractThe Babbage gas field was discovered in 1988 by exploration well 48/2-2 which drilled into the Permian-age lower Leman Sandstone Formation below a salt wall. Seismic imaging is compromised by the presence of this salt wall, which runs east–west across the southern part of the structure, creating uncertainties in depth conversion and in the in-place volumes. Pre-stack depth migration with beam and reverse time migrations appropriate for the complex salt geometry provided an uplift in subsalt seismic imaging, enabling the development of the field, which is located at the northern edge of the main reservoir fairway in a mixed aeolian–fluvial setting. Advances in artificial fracturing technology were also critical to the development: in this area, deep burial is associated with the presence of pore-occluding clays, which reduce the reservoir permeability to sub-millidarcy levels. The Babbage Field was sanctioned in 2008, based on an in-place volume range of 248–582 bcf; first production was in 2010. It produces from five horizontal development wells that were artificially fracced to improve deliverability of gas from the tight matrix. None of the wells has drilled the gas–water contact, which remains a key uncertainty to the in-place volumes, along with depth-conversion uncertainty below the salt wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call