Abstract

The Azzalini skew-t distributions are popular because of their theoretical foundation and the availability of computational methods in the R package sn. One difficulty with this skew-t family is that the elements of the expected information matrix do not have closed form analytic formulas. Thus, we developed a numerical integration method of computing the expected information matrix in the R package skewtInfo. The accuracy of our expected information matrix calculation method was confirmed by comparing the result with that obtained using an observed information matrix for a very large sample size. A Monte Carlo study to evaluate the accuracy of the finite-sample standard errors obtained with our expected information matrix calculation method, for the case of three realistic skew-t parameter vectors, indicates that use of the expected information matrix results in standard errors as accurate as, and sometimes a little more accurate than, use of an observed information matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.