Abstract

Ionic liquids (ILs) are good candidates for azeotropy separation. Knowledge of the microstructure properties of azeotrope − IL mixtures is important because they could reveal the molecular intrinsic cause of the elimination of azeotropy and represent the basis for the practical process. In this work, the microstructures of ethyl acetate-acetonitrile azeotrope mixtures and a representative IL, 1‑butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N], which could eliminate the azeotropy of the ethyl acetate-acetonitrile system, were studied by Fourier transform infrared spectroscopy with the assistance of quantum chemical calculations and excess spectra. The C≡N stretching vibrational region of acetonitrile was closely examined. The interaction complexes of ethyl acetate-acetonitrile and ion cluster/ion pair/ion − acetonitrile were identified. Weak strength hydrogen-bonds with electrostatically dominant and closed-shell interaction properties were found in these complexes. The interactions between [BMIM][Tf2N] and acetonitrile were stronger than those between ethyl acetate and acetonitrile, which caused the addition of IL to easily destroy the ethyl acetate-acetonitrile interaction complex. The interactions between [BMIM][Tf2N] and acetonitrile were stronger than those between [BMIM][Tf2N] and ethyl acetate, which would influence the relative volatility of ethyl acetate and acetonitrile in the azeotrope system. When x(IL) was larger than 0.027, all the interaction complexes between acetonitrile and ethyl acetate were completely broken apart, and the azeotrope was eliminated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.