Abstract

Many forms of neurodegenerative disease are characterized by Wallerian degeneration, an active program of axonal destruction. Recently, the important player which enacts Wallerian degeneration was discovered, the multidomain protein SARM1. Since the SARM1 protein has classically been thought of as an innate immune molecule, its role in Wallerian degeneration has raised questions on the evolutionary forces acting on it. Here, we synthesize a picture of SARM1's evolution through various organisms by examining the molecular and genetic changes of SARM1 and the genes around it. Using proteins that possess domains homologous to SARM1, we established distances and Ka/Ks values through 5671 pairwise species-species comparisons. We demonstrate that SARM1 diverged across species in a pattern similar to other SAM domain-containing proteins. This is surprising, because it was expected that SARM1 would behave more like its TIR domain relatives. Going along with this divorce from TIR, we also noted that SARM1's TIR is under stronger purifying selection than the rest of the TIR domain-containing proteins (remaining highly conserved). In addition, SARM1's synteny analysis reveals that the surrounding gene cluster is highly conserved, functioning as a potential nexus of gene functionality across species. Taken together, SARM1 demonstrates a unique evolutionary pattern, separate from the TIR domain protein family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.