Abstract

In this paper, the axisymmetric contact problem with the partial slip condition for a functionally graded coated half-space which is indented by a rigid spherical indenter is considered. The material properties are assumed to vary along the thickness of the coating. A series of linear functions of the thickness are used to model the functionally graded coating with the arbitrarily varying shear modulus. The contact problem is formulated in terms of a set of Cauchy singular integral equations by employment of Hankel integral transforms technique and transfer matrix method. By using the uncoupled solution and the coupled solution,the coupled equations are solved. The effect of the coating’s gradient on the normal and radial tractions in the whole contact region is presented. The results show that the contact tractions and the size of the stick zone can be altered by adjusting the gradient of the coating. This may have potential applications in the resistance of contact deformation and damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call