Abstract

Based on the theory of elastic wave propagation in saturated soil subgrade established by the author of this paper, the axisymmetric vertical vibration of a rigid circular foundation resting on partially saturated soil subgrade which is composed of a dry elastic layer and a saturated substratum is studied. The analysis relied on the use of integral transform techniques and a pair of dual integral equations governing the vertical vibration of the rigid foundation is listed under the consideration of mixed boundary-value condition. The results are reduced to the case for saturated half-space. The set of dual integral equations are reduced to a Fredholm integral equation of the second kind and solved by numerical procedures. Numerical examples are given at the end of the paper and plots of the dynamic compliance coefficient Cv versus the dimensionless frequency a0 are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.