Abstract

Our strategy is to define the notion of vector bundles and principal bundles in an invariant way by only using geometric properties of manifolds. In order to prove further geometric properties of these manifolds (e.g., curvature or parallel transport), we use the fact that, by definition, these properties do not depend on the choice of local bundle coordinates. Therefore, we can pass to special bundle coordinates. This is the situation of product bundles considered in Sects. 15.1 through 15.3. This way, the general results are immediate consequences of our special results about product bundles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.