Abstract

The diffraction field distribution of a high density grating with a period of 2.5λ is analyzed with the finite-difference time-domain (FDTD) method. The numerical results show the axial spatial evolution of the optical field near the 1/2 Talbot plane of the grating, which is verified by experiment with the scanning near-field optical microscopy (SNOM) technique. It should be helpful for understanding more clearly the diffraction behavior of a high density grating in micro- and nano-optics and be beneficial for applications of the Talbot effect, such as the near-field photolithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.