Abstract

Single-hop wavelength-division-multiplexing (WDM) networks based on a central passive star coupler (PSC) or arrayed-waveguide grating (AWG) hub have received a great deal of attention as promising solutions for the quickly increasing traffic in metropolitan and local area networks. These single-hop networks suffer from a single point of failure: if the central hub fails, then all network connectivity is lost. To address this single point of failure in an efficient manner, we propose a novel single-hop WDM network, the AWG/spl par/PSC network. The AWG/spl par/PSC network consists of an AWG in parallel with a PSC. The AWG and PSC provide heterogeneous protection for each other; the AWG/spl par/PSC network remains functional when either the AWG or the PSC fails. If both AWG and PSC are functional, the AWG/spl par/PSC network uniquely combines the respective strengths of the two devices. By means of analysis and verifying simulations we find that the throughput of the AWG/spl par/PSC network is significantly larger than the total throughput obtained by combining the throughput of a stand-alone AWG network with the throughput of a stand-alone PSC network. We also find that the AWG/spl par/PSC network gives over a wide operating range a better throughput-delay performance than a network consisting of either two load sharing PSCs in parallel or two load sharing AWGs in parallel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.