Abstract

The collision avoidance of a pair of uniformly moving bodies is considered in three dimensions. The relative motion of the bodies yields an expression relating the time to closest approach, the minimum range, the current range and its rate of change, other variables being unobservable. A Boolean relation is then proposed that is satisfied whenever the minimum range and time to closest approach simultaneously fall below given thresholds. The relation is further studied, in particular with regard to the issue of false and premature alarms. An airborne collision avoidance system is a possible application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.