Abstract

The Avogadro constant, the number of entities in the amount of substance of one mole, links the atomic and the macroscopic properties of matter. Since the molar Planck constant is very well known via the measurement of the Rydberg constant, the Avogadro constant is also closely related to the Planck constant. In addition, its accurate determination is of paramount importance for a new definition of the kilogram in terms of a fundamental constant. Here, we describe a new and unique approach for the determination of the Avogadro constant by “counting” the atoms in 1kg single-crystal spheres, which are highly enriched with the 28Si isotope. This approach has enabled us to apply isotope dilution mass spectroscopy to determine the molar mass of the silicon crystal with unprecedented accuracy. The value obtained, NA=6.02214084(18)×1023mol−1, is now the most accurate input datum for a new definition of the kilogram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.