Abstract

In this note we introduce the concept of local average dimension of a measure µ, at x∈ℝn as the unique exponent where the lower average density of µ, at x jumps from zero to infinity. Taking the essential infimum or supremum over x we obtain the lower and upper average dimensions of µ, respectively. The average dimension of an analytic set E is defined as the supremum over the upper average dimensions of all measures supported by E. These average dimensions lie between the corresponding Hausdorff and packing dimensions and the inequalities can be strict. We prove that the local Hausdorff dimensions and the local average dimensions of µ at almost all x are invariant under orthogonal projections onto almost all m- dimensional linear subspaces of higher dimension. The corresponding global results for µ and E (which are known for Hausdorff dimension) follow immediately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.