Abstract

AbstractIf K is a triangulation of a closed 3-manifold M with E0(K) edges and F0(K) triangles, then the average edge order of K is defined to beIn [8], the relations between this quantity and the topology of M are investigated, especially in the case of μ0(K) being small (where the study relies on Oda's classification of triangulations of 𝕊2 up to eight vertices—see [9]). In the present paper, the attention is fixed upon the average edge order of coloured triangulations; surprisingly enough, the obtained results are perfectly analogous to Luo-Stong' ones, and may be proved with little effort by means of edge-coloured graphs representing manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.