Abstract

Random graph theory is used to examine the small-world phenomenon– any two strangers are connected through a short chain of mutual acquaintances. We will show that for certain families of random graphs with given expected degrees, the average distance is almost surely of order log n/ logd where d is the weighted average of the sum of squares of the expected degrees. Of particular interest are power law random graphs in which the number of vertices of degree k is proportional to 1/k β for some fixed exponent β. For the case of β > 3, we prove that the average distance of the power law graphs is almost surely of order log n/ log d. However, many Internet, social, and citation networks are power law graphs with exponents in the range 2 < β < 3 for which the power law random graphs have average distance almost surely of order log log n, but have diameter of order log n (provided having some mild constraints for the average distance and maximum degree). In particular, these graphs contain a dense subgraph...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.