Abstract
Nonassociative differential extensions are generalizations of associative differential extensions, either of a purely inseparable field extension K of exponent one of a field F, F of characteristic p, or of a central division algebra over a purely inseparable field extension of F. Associative differential extensions are well known central simple algebras first defined by Amitsur and Jacobson. We explicitly compute the automorphisms of nonassociative differential extensions. These are canonically obtained by restricting automorphisms of the differential polynomial ring used in the construction of the algebra. In particular, we obtain descriptions for the automorphisms of associative differential extensions of D and K, which are known to be inner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.