Abstract
The purpose of this work with its results presented in the article was to develop and transfer to the class of Reed – Solomon codes (RS-codes) the basic provisions of the theory of syndrome norms (TNS), previously developed for the noise-resistant coding of the class of Bose – Chaudhuri – Hocquenghem codes (BCH-codes), which is actively used in theory and practice. To achieve this goal, a transition has been made in the interpretation of the theory of RS-codes from polynomial to matrix language. This approach allows you to fully use the capabilities of Galois field theory. The main difficulty of RS-codes is that they rely on a non-binary alphabet. The same factor is attractive for practical applications of RS-codes. The matrix language allows you to break the syndromes of errors into components that are elements of the Galois field – the field of definition of RS-codes. The TNS for BCH codes is based on the use of automorphisms of these codes – cyclic and cyclotomic substitutions. Automorphisms of RS-codes are studied in detail. The cyclic substitution belongs to the categories of automorphisms of RS-codes and generates a subgroup Г of order N (code length). The cyclotomic substitution does not belong to the class of automorphisms of RS-codes – the power of the alphabet greater than 2 prevents this. When expanding the concept of automorphism of a code beyond substitutions of coordinates of vectors to automorphisms of RS-codes, homotheties or affine substitutions can be attributed, since they also form a cyclic group A of order N. It is shown that cyclic and affine substitutions commute with each other, which, generally speaking, is not typical for linear operators and substitutions. The group Г of cyclic substitutions, the group A of affine substitutions, and the combined AГ group of order N2 generate 3 types of error orbits in RS-codes. The structure of the orbits of errors with respect to the action of groups A, Г and the combined group AГ is studied {231 words}.
Highlights
The purpose of this work with its results presented in the article was to develop
which is actively used in theory and practice
a transition has been made in the interpretation of the theory
Summary
Для достижения поставленной цели осуществлен переход в изложении теории РС-кодов с полиномиального языка на матричный. Матричный язык позволяет разбивать синдромы ошибок на компоненты, являющиеся элементами поля Галуа – поля определения РС-кодов. ТНС для БЧХ-кодов опирается на применение автоморфизмов этих кодов – циклических и циклотомических подстановок. Циклическая подстановка относится к разрядам автоморфизмов РС-кодов и порождает подгруппу Г порядка N (длина кода). При расширении понятия автоморфизма кода за рамки перестановок координат векторов к автоморфизмам РС-кодов можно отнести и гомотетии, или аффинные подстановки, поскольку они также образуют циклическую группу А порядка N. Что циклическая и аффинная подстановки коммутируют друг с другом, что, вообще говоря, не типично для линейных операторов и подстановок. Ключевые слова: линейный код, РС-код, синдромы ошибок, автоморфизмы кодов, циклическая подстановка, аффинная подстановка, орбиты векторов-ошибок, теория норм синдромов. Автоморфизмы и орбиты ошибок кодов Рида – Соломона.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.