Abstract
The use of numerical uncertainty representations allows better modeling of some aspects of human evidential reasoning. It also makes knowledge acquisition and system development, test, and modification more difficult. We propose that where possible, the assignment and/or refinement of rule weights should be performed automatically. We present one approach to performing this training - numerical optimization - and report on the results of some preliminary tests in training rule bases. We also show that truth maintenance can be used to make the training more efficient and ask some epistemological questions raised by training rule weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.