Abstract

To evaluate the autolytic phenotype of Bacillus thuringiensis. The autolytic rate of 87 strains belonging to different subsp. of B. thuringiensis was examined at pH 6, 6.5 and 8.5 in different buffers under starvation conditions. At pH 6 the extent of autolysis (average in the strain collection 38.3 +/- 21.1) was strain-dependent with wide variability, while at pH 6.5 and 8.5 (averages 72.0 +/- 9.0 and 63.1 +/- 8.2, respectively) it was much more uniform with only a few strains showing low autolytic rates. Forty-one per cent of the strains showed high resistance (>/=80%) to mutanolysin, a commercial muramidase from Streptomyces. The peptidoglycan hydrolase pattern was evaluated by renaturing SDS-PAGE using cells of B. thuringiensis subsp. tolworthi HD125 as indicator. The strain collection showed seven major lytic bands of about 90, 63, 46, 38, 32, 28 and 25 kDa, and in the stationary growth phase (72 h) there was a more intense 25 kDa band in the autolytic pattern. Using Micrococcus lysodeicticus and Listeria monocytogenes as the indicators lytic activity was retained, as seen by the bands of 63, 46, 38, 32 and 25 kDa. Growth in the different media did not affect the autolytic pattern. NaCl abolished the activity of all the peptidoglycan hydrolases in the gel, but in the presence of KCl, MgCl(2), MnCl(2) and EDTA some activity was retained. At basic pH the lytic activity increased. The autolytic phenotype of B. thuringiensis was found to be strain-dependent, and different proteins exibited peptidoglycan hydrolase activity, particularly at alkaline pH. Several of these proteins retained lytic activity against other bacterial species. The characterisation of the autolytic phenotype of B. thuringiensis should expand the prospects of using this species in bacterial bio-control and field applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.