Abstract

A predictive model for the autoignition and combustion of fuel–air mixtures employing detailed full chemical schemes was used to examine the autoignition and combustion characteristics in air of hydrogen in the presence of a range of common fuels. These included the gaseous fuels: methane, carbon monoxide and the higher hydrocarbon fuel n-heptane. A wide range of relative concentrations of the fuel components in the binary mixtures with hydrogen for different values of initial mixture temperature and pressure were considered under constant volume adiabatic conditions. It is shown that the presence of hydrogen in turn with these fuels can bring about complex changes to the autoignition behaviour of the fuel mixtures that show hydrogen may behave as an accelerant or retardant depending on the fuel, initial temperature, pressure and equivalence ratio considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.