Abstract

Separating primary from secondary changes in the autistic brain has long been a research goal. With knowledge of wide-ranging molecular deficits, identification of the best therapeutic targets becomes a priority. See Letter p.380 Despite high heritability, autism is genetically very heterogeneous. This raises the question of whether there are many different pathologies presenting as autistic spectrum disorder (ASD), or whether the myriad genetic causes converge on a few biological pathways affected in most individuals, which could be therapeutically targeted. A study using transcriptome and gene co-expression network analysis suggests that the latter, convergent model is the case. The gene expression patterns that typically distinguish frontal and temporal cortex are much less pronounced in the ASD brain, and specific splicing abnormalities and modules of co-expressed genes associated with autism are enriched for previously identified genetic association signals. This points to transcriptional and splicing dysregulation as underlying mechanisms of neuronal dysfunction in this disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.