Abstract
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The “synthetic control” is a weighted average of control units that balances the treated unit’s pretreatment outcomes and other covariates as closely as possible. A critical feature of the original proposal is to use SCM only when the fit on pretreatment outcomes is excellent. We propose Augmented SCM as an extension of SCM to settings where such pretreatment fit is infeasible. Analogous to bias correction for inexact matching, augmented SCM uses an outcome model to estimate the bias due to imperfect pretreatment fit and then de-biases the original SCM estimate. Our main proposal, which uses ridge regression as the outcome model, directly controls pretreatment fit while minimizing extrapolation from the convex hull. This estimator can also be expressed as a solution to a modified synthetic controls problem that allows negative weights on some donor units. We bound the estimation error of this approach under different data-generating processes, including a linear factor model, and show how regularization helps to avoid over-fitting to noise. We demonstrate gains from Augmented SCM with extensive simulation studies and apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth. We implement the proposed method in the new augsynth R package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.