Abstract

AP9-cd, a novel lignan composition from Cedrus deodara has significant anticancer potential, and to further enhance its activity, it was lucratively encumbered into solid lipid nanoparticles (SLNs). These nanoparticles were formulated by micro-emulsion technique with 70% drug trap competence. AP9-cd-SLNs were regular, solid, globular particles in the range of 100–200 nm, which were confirmed by electron microscopic studies. Moreover, AP9-cd-SLNs were found to be stable for up to six months in terms of color, particle size, zeta potential, drug content and entrapment. AP9-cd-SLNs have 30–50% higher cytotoxic and apoptotic potential than the AP9-cd alone. The augmented anticancer potential of AP9-cd-SLNs was observed in cytotoxic IC50 value, apoptosis signaling cascade and in Ehrlich ascites tumor (EAT) model. AP9-cd-SLNs induce apoptosis in Molt-4 cells via both intrinsic and extrinsic pathway. Moreover, the dummy nanoparticles (SLNs without AP9-cd) did not have any cytotoxic effect in cancer as well as in normal cells. Consequently, SLNs of AP9-cd significantly augment the apoptotic and antitumor potential of AP9-cd. The present study provides a podium for ornamental the remedial latent via novel delivery systems like solid lipid nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.