Abstract

Abstract The Auger Tension Leg Platform (TLP), which was installed in 1994, is Shell’s first TLP in the Gulf of Mexico (GoM). The Auger TLP was designed during the time when the industry had not yet been able to fully investigate the global dynamic characteristics of TLPs, especially the high frequency dynamic responses of tendons, and the design tensions of the Auger tendons were not calibrated to scaled wave basin model tests like the later TLP projects since the Auger TLP. Based on the accumulated experience from more than two decades’ operation and a number of studies conducted on the Auger TLP global performance, it is revealed that the Auger tendon tension is conservative given the current operational limit; however, the extra conservatism has not been fully quantified due to the lack of model test data. With the recorded Auger global motions and tendon tensions from the on-board measurement system, the performance of the Auger TLP in extreme storms is becoming fully unveiled by calibrating the analytical predictions (both time-domain analysis and frequency-domain analysis) with the measurement data. Thus, the objectives of this paper are (i) to calibrate the TLP minimum tendon tension design recipe based on the high-fidelity field measurement data from Tropical Storm Cindy 2017 and Hurricane Laura 2020 using both time-domain and frequency-domain simulations, and (ii) to propose the new allowable vertical center of gravity (VCG) and the new tendon pretensions for the Auger TLP for the extreme storm conditions. It is concluded that the current allowable VCG can be increased or the current required tendon pretension can be decreased without compromising the safety to the platform during the extreme storm conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call