Abstract
The aug-cc-pVTZ-J basis set family is extended to include the fourth-row p-block elements Ga, Ge, As, Se, and Br. We use the established approach outlined by Sauer and coworkers (J. Chem. Phys. 115, 1324 [2001], J. Chem. Phys. 133, 054308 [2010], J. Chem. Theory Comput. 7, 4070 [2011], and J. Chem. Theory Comput. 7, 4077 [2011]) where the completely uncontracted aug-cc-pVTZ basis set is saturated with tight s-, p-, d-, and f-functions to form the aug-cc-pVTZ-Juc basis set for the tested elements. The saturation is carried out on the simplest hydrides possible for the tested elements GaH, GeH4 , AsH3 , H2 Se, and HBr until an improvement is less than 0.01% for all s-, p-, and d-functions added. f-Functions are added to an improvement less than or equal to 1.0% due to the computational expense these functions add. The saturated aug-cc-pVTZ-Juc (26s16p12d5f) is then recontracted using the molecular orbital coefficients from self-consistent field calculations on the simple hydrides to improve computational efficiency. During contraction of the basis set, we observe that the linear hydrogen bromide molecule has a slower convergence than the other tested molecules which sets a limit on the accuracy obtained. All calculations with the contracted aug-cc-pVTZ-J [17s10p7d5f] gives results that are within 1.0% of the uncontracted results at considerable computational savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.