Abstract

The transition point from a two-dimensional (2D) to a three-dimensional (3D) structure in a series of small gold clusters remains a topic of continuing debate. In the present study, coupled-cluster CCSD(T) and DFT calculations are performed to re-examine the relative energies of several low-lying isomers of Au12, aiming to shed new light on this issue. At odds with many previous reports on the preference of a planar di-capped elongated-hexagon structure, the Au12 size is found to energetically prefer a globular cup-like form with C2v symmetry. While DFT results are not able to assign the most stable form of Au12 as the relative energies between the lowest-lying isomers are strongly functional-dependent, coupled-cluster theory calculations point out the preference of a 3D structure for having a D3h symmetry. Such a prediction is further supported by a comparison of the vibrational spectra computed using the revTPSS density functional with the available experimental infrared ones that were previously recorded from the far-IR multiple photon dissociation (FIR-MPD) experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call