Abstract

Thyrotoxicosis (TT) is associated with an increase in both total and cardiovascular mortality. One of the main thyrotoxicosis complications is Atrial Fibrillation (AF). Right AF predictors help medical personal prescribe the select patients with high risk of TAF for a closest follow-up or for an early radical treatment of thyrotoxicosis. The main goal of this study is creating a method for practical treatment and diagnostic AF. This study proposes a new method for assessing the risk of occurrence atrial fibrillation for patients with TT. This method considers both the features of the complication and the specifics of the chronic disease. A model is created based on case histories of patients with thyrotoxicosis. We used Machine Learning methods for creating several models. Each model has advantages and disadvantages depending on the diagnostic and medical purposes. The resulting models show high results in the different metrics of the prediction of a thyrotoxic AF. These models are interpreted and simple for use. Therefore, models can be used as part of the support and decision-making system (DSS) by medical specialists in the treatment AF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.