Abstract

BackgroundA variety of human genetic diseases is known to be caused by mutations in genes encoding chromatin factors and epigenetic regulators, such as DNA or histone modifying enzymes and members of ATP-dependent chromatin remodeling complexes. Floating-Harbor syndrome is a rare genetic disease affecting human development caused by dominant truncating mutations in the SRCAP gene, which encodes the ATPase SRCAP, the core catalytic subunit of the homonymous chromatin-remodeling complex. The main function of the SRCAP complex is to promote the exchange of histone H2A with the H2A.Z variant. According to the canonical role played by the SRCAP protein in epigenetic regulation, the Floating-Harbor syndrome is thought to be a consequence of chromatin perturbations. However, additional potential physiological functions of SRCAP have not been sufficiently explored.ResultsWe combined cell biology, reverse genetics, and biochemical approaches to study the subcellular localization of the SRCAP protein and assess its involvement in cell cycle progression in HeLa cells. Surprisingly, we found that SRCAP associates with components of the mitotic apparatus (centrosomes, spindle, midbody), interacts with a plethora of cytokinesis regulators, and positively regulates their recruitment to the midbody. Remarkably, SRCAP depletion perturbs both mitosis and cytokinesis. Similarly, DOM-A, the functional SRCAP orthologue in Drosophila melanogaster, is found at centrosomes and the midbody in Drosophila cells, and its depletion similarly affects both mitosis and cytokinesis.ConclusionsOur findings provide first evidence suggesting that SRCAP plays previously undetected and evolutionarily conserved roles in cell division, independent of its functions in chromatin regulation. SRCAP may participate in two different steps of cell division: by ensuring proper chromosome segregation during mitosis and midbody function during cytokinesis. Moreover, our findings emphasize a surprising scenario whereby alterations in cell division produced by SRCAP mutations may contribute to the onset of Floating-Harbor syndrome.

Highlights

  • A variety of human genetic diseases is known to be caused by mutations in genes encoding chromatin factors and epigenetic regulators, such as DNA or histone modifying enzymes and members of ATP-dependent chromatin remodeling complexes

  • We found that SRCAP associates with components of the mitotic apparatus, including centrosomes, the spindle and midbody and its RNAi-depleted HeLa cells (RNAi)-mediated depletion in HeLa cells perturbs mitosis and cytokinesis

  • Unconventional subcellular localization of SRCAP during cell division First, we investigated the subcellular localization of the endogenous SRCAP protein during the cell cycle in HeLa cells using immunofluorescence microscopy (IFM)

Read more

Summary

Introduction

A variety of human genetic diseases is known to be caused by mutations in genes encoding chromatin factors and epigenetic regulators, such as DNA or histone modifying enzymes and members of ATP-dependent chromatin remodeling complexes. Floating-Harbor syndrome is a rare genetic disease affecting human development caused by dominant truncating mutations in the SRCAP gene, which encodes the ATPase SRCAP, the core catalytic subunit of the homonymous chromatin-remodeling complex. In the last two decades, it has been shown that mutations in genes encoding a variety of chromatin factors and epigenetic regulators, such as DNA or histone modifying enzymes and members of ATP-dependent chromatin remodeling complexes, are crucial players in human genetic diseases and cancer [1,2,3,4]. The primary function of SRCAP complex is to catalyze the exchange of canonical histone H2A with the H2A.Z variant [9, 18, 19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call