Abstract

The relevant role played by the ATPase Inhibitory Factor 1 (IF1) as a physiological in vivo inhibitor of mitochondrial ATP synthase in cancer and non-cancer cells, and in the mitochondria of different mouse tissues, as assessed in different genetic loss- and gain-of-function models of IF1 has been extensively documented. In this review we summarize our findings and those of others that favor the implication of IF1 in metabolic reprogramming to an enhanced glycolytic phenotype, which is mediated by its binding and inhibition of the ATP synthase. Moreover, we emphasize that IF1 is phosphorylated in vivo in its S39 by the c-AMP-dependent PKA activity of mitochondria to render an inactive inhibitor that is unable to interact with the enzyme, thus triggering the activation of ATP synthase. Overall, we discuss and challenge the results that argue against the role of IF1 as in vivo inhibitor of mitochondrial ATP synthase and stress that IF1 cannot be regarded solely as a pro-oncogenic protein because in some prevalent carcinomas, it prevents metastatic disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.