Abstract

Several in vitro DNA replication systems were employed to characterize the ATP dependency of adenovirus type 5 (Ad5) DNA replication. Ad5 DNA synthesis in isolated nuclei, representing the elongation of nascent DNA chains, was slightly ATP dependent. Reduction of the ATP concentration from the optimum (8 mM) to the endogenous value (0.16 μ M) reduced Ad5 DNA replication only to 70%. No change in the pattern of replication was observed as indicated by the analysis of replicative intermediates using agarose gel electrophoresis. ATP could be replaced by dATP, but not by GTP or other nucleoside triphosphates. By contrast, cellular DNA replication in isolated nuclei from HeLa cells was reduced to 12% by the omission of ATP. These differences could not be explained by different ATP pools or by effects of ATP on dNTP pools. Cellular DNA replication in contrast to viral DNA replication was sensitive to low concentrations of adenosine 5′- O-(3-thiotriphosphate). Inhibition by this ATP analog was competitive with ATP ( K i = 0.4 m M). Adenovirus DNA replication by DNA-free nuclear extracts, representing initiation plus elongation (Challberg and Kelly, Proc. Nat. Acad. Sci. USA 76, 655–659,1979), exhibited a nearly absolute requirement for ATP. ATP could be substituted not only by dATP, but also by GTP and dGTP and to a lesser extent by pyrimidine triphosphates. Similar results were found when the formation of a covalent complex between dCTP and the precursor terminal protein was studied. This reaction is essential for the initiation of Ad5 DNA replication. The results indicate that different ATP-requiring functions are employed during the initiation and elongation stages of adenovirus DNA replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.