Abstract

Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide. As pharmacokinetics, metabolism and response vary among individuals, we wanted to determine the most reliable metabolic ATV phenotypes and identify novel and preponderant genetic markers that affect ATV plasma levels. A controlled, randomized, crossover, single-blind, three-treatment, three-period, and six-sequence clinical study of ATV (single 80-mg oral dose) was conducted among 60 healthy Mexican men. ATV plasma levels were measured using high-performance liquid chromatography mass spectrometry. Genotyping was performed by real-time PCR with TaqMan probes. Four ATV metabolizer phenotypes were found: slow, intermediate, normal and fast. Six gene polymorphisms, SLCO1B1-rs4149056, ABCB1-rs1045642, CYP2D6-rs1135840, CYP2B6-rs3745274, NAT2-rs1208, and COMT- rs4680, had a significant effect on ATV pharmacokinetics (P < 0.05). The polymorphisms in SLCO1B1 and ABCB1 seemed to have a greater effect and were especially important for the shift from an intermediate to a normal metabolizer. This is the first study that demonstrates how the interaction of genetic variants affect metabolic phenotyping and improves understanding of how SLCO1B1 and ABCB1 variants that affect statin metabolism may partially explain the variability in drug response. Notwithstanding, the influence of other genetic and non-genetic factors is not ruled out.

Highlights

  • Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide

  • The clustering analysis method has been successfully applied for classification purposes in other areas of biomedical research[14,15,16], it has been little used in pharmacokinetics, pharmacogenetics and pharmacogenomics[6]

  • We discovered a significant effect of the COMT-rs4680 polymorphism on the Cmax, AUC0-∞ and Cl of ATV, this effect was not supported by regression analysis

Read more

Summary

Introduction

Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide. SLCO1B1-rs4149056, ABCB1-rs1045642, CYP2D6-rs1135840, CYP2B6-rs3745274, NAT2-rs1208, and COMT- rs4680, had a significant effect on ATV pharmacokinetics (P < 0.05). The polymorphisms in SLCO1B1 and ABCB1 seemed to have a greater effect and were especially important for the shift from an intermediate to a normal metabolizer This is the first study that demonstrates how the interaction of genetic variants affect metabolic phenotyping and improves understanding of how SLCO1B1 and ABCB1 variants that affect statin metabolism may partially explain the variability in drug response. We selected candidate genes involved in the metabolism and response to drugs, i.e. ABCB1, SLCO1B1 and CYP2D6, based on previous reports, frequency, and importance in the Mexican population and analyzed them under genetic models to identify or confirm their effect on the pharmacokinetics of ATV

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.