Abstract

ObjectivesPorphyromonas gingivalis, a keystone periodontopathogen, has multiple two-component systems that are thought to modulate virulence. In this study, we focused on PGN_0775 response regulator (RR), an AtoC homolog, and attempted to identify the target gene that it regulates in P. gingivalis. MethodsComparative proteomic analyses comprising two-dimensional electrophoresis and peptide mass fingerprinting were applied to total protein samples from parent (WT) and atoC gene knockout (KO) strains to screen for affected protein spots. Fluctuations in the expression of corresponding genes were further confirmed using relative quantitative real-time polymerase chain reaction (RQPCR). ResultsFive protein spots with fluctuating expression levels were identified in pgn_0775 KO strains along with their masses and physiological features, which contained two hypothetical proteins with higher expression levels in the WT than in the KO strains. RQPCR analysis confirmed that mRNA levels were consistently decreased in KO and recovered in pgn_0775-complemented KO strains. The two hypothetical proteins appeared to be the products of an operon that comprises four genes encoding three hypothetical but putative type IX secretion system sorting domain-containing proteins and an N-terminal region of the C25 cysteine peptidase. ConclusionsThe AtoC RR homolog in P. gingivalis upregulates the expression of the operon encoding potentially antigenic proteins retained on the cell surface; thus, it could be a promising target for P. gingivalis-specific antivirulence therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call