Abstract
The statistical theory proposed by Rosenkranz to calculate the continuous absorption by water molecules in the high-frequency (infrared) wing of the pure rotational band is reviewed and extended. In the review there is a discussion, in particular, of the approximations that are made, including those that are necessary and which limit the applicability of the theory to other spectral regions, and those that are made for calculational convenience. Then, several extensions to the theory are discussed, including increasing the number of rotational states used to calculate the band-average relaxation parameter, modifying the definition of this parameter to account for near-wing effects, and eliminating the boxcar approximation. This last modification, effected by using asymmetric-top functions instead of symmetric-top functions to calculate matrix elements of the density operator and to diagonalize the dipole–dipole interaction, results in significant enhancement of the relaxation parameter. This improvement, in turn, allows one to eliminate an inconsistency in the original formulation of Rosenkranz while obtaining substantially the same final results. The implications of the present results for the calculation of the absorption in the high-frequency wing of the ν2 fundamental vibration-rotational band of H2O are discussed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.