Abstract
AbstractThis study investigates the atmospheric dynamics of the major dust storm that occurred in June 2020 over the Sahara and during which dust clouds associated with the highest‐on‐record aerosol optical depths were transported toward the America. An anomalous atmospheric circulation pattern in the mid‐latitudes, linked to a circumglobal wavetrain, resulted in the development of a subtropical high‐pressure system to the west of the Saharan heat low. This created a pressure dipole and generated anomalously strong northeasterlies over the Sahara, which caused continuous dust emissions over 4 days. Occurring along the northern fringes of the intertropical discontinuity, the dust was transported to higher altitudes (6 km) by the strong updraft in this region. This injected the dust at the African Easterly Jet (AEJ) altitudes and favored a rapid westward long‐range transport. The AEJ was also anomalously strong, being strengthened by the anticyclonic circulation associated with the anomalous high.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.