Abstract

Mechanisms for the atmospheric degradation reaction of BrCH2O2+HO2 were investigated using quantum chemistry methods. The result indicates that the dominant product is BrCH2OOH+O2(3Σ). While CH2O+HBr+O3, BrCHO+OH+HO2 and CH2O+Br+HO3 will be competitive to a certain extent in the atmosphere. Meanwhile, the nascent product – BrCH2OOH reacts easily with OH radicals leading to BrCH2O2 again under the atmospheric conditions. Moreover, OH radicals could act as a catalyst in the net reaction of BrCH2OOH→BrCHO+H2O. Thus the proposed product BrCHO+H2O+O2 in the experiment might be generated from the subsequent reaction of BrCH2OOH with extra OH radicals. Comparisons indicate that halogen substitution effect makes minor contributions to the XCH2O2 (X=H, F, Cl and Br)+HO2 reactions in the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.