Abstract
We present measurements of the star formation rate (SFR) in the early-type galaxies (ETGs) of the ATLAS3D sample, based on Wide-field Infrared Survey Explorer (WISE) 22um and Galaxy Evolution Explorer (GALEX) far-ultraviolet emission. We combine these with gas masses estimated from 12CO and HI data in order to investigate the star formation efficiency (SFE) in a larger sample of ETGs than previously available. We first recalibrate (based on WISE data) the relation between old stellar populations (traced at Ks-band) and 22um luminosity, allowing us to remove the contribution of 22um emission from circumstellar dust. We then go on to investigate the position of ETGs on the Kennicutt-Schmidt (KS) relation. Molecular gas-rich ETGs have comparable star formation surface densities to normal spiral galaxy centres, but they lie systematically offset from the KS relation, having lower star formation efficiencies by a factor of ~2.5 (in agreement with other authors). This effect is driven by galaxies where a substantial fraction of the molecular material is in the rising part of the rotation curve, and shear is high. We show here for the first time that although the number of stars formed per unit gas mass per unit time is lower in ETGs, it seems that the amount of stars formed per free-fall time is approximately constant. The scatter around this dynamical relation still correlates with galaxy properties such as the shape of the potential in the inner regions. This leads us to suggest that dynamical properties (such as shear or the global stability of the gas) may be important second parameters that regulate star formation and cause much of the scatter around star-formation relations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.