Abstract
The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic differential operator. The topological index depends on a cohomology class that is constructed from the principal symbol of the operator. On contact manifolds, the important Fredholm operators are not elliptic, but hypoelliptic. Their symbolic calculus is noncommutative, and is closely related to analysis on the Heisenberg group. For a hypoelliptic differential operator in the Heisenberg calculus on a contact manifold we construct a symbol class in the K-theory of a noncommutative C * -algebra that is associated to the algebra of symbols. There is a canonical map from this analytic K-theory group to the ordinary cohomology of the manifold, which gives a de Rham class to which the Atiyah-Singer formula can be applied. We prove that the index formula holds for these hypoelliptic operators. Our methods derive from Connes' tangent groupoid proof of the index theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.