Abstract

Holomorphic gauge fields in N=1 supersymmetric heterotic compactifications can constrain the complex structure moduli of a Calabi-Yau manifold. In this paper, the tools necessary to use holomorphic bundles as a mechanism for moduli stabilization are systematically developed. We review the requisite deformation theory -- including the Atiyah class, which determines the deformations of the complex structure for which the gauge bundle becomes non-holomorphic and, hence, non-supersymmetric. In addition, two equivalent approaches to this mechanism of moduli stabilization are presented. The first is an efficient computational algorithm for determining the supersymmetric moduli space, while the second is an F-term potential in the four-dimensional theory associated with vector bundle holomorphy. These three methods are proven to be rigorously equivalent. We present explicit examples in which large numbers of complex structure moduli are stabilized. Finally, higher-order corrections to the moduli space are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.