Abstract

[Abridged] Physical and evolutionary properties of the sub-mJy radio population are not entirely known. The radio/optical analysis of the ATESP 5 GHz sample has revealed a significant class of compact flat/inverted radio-spectrum sources associated to early-type galaxies up to redshift 2. Such sources are most plausibly triggered by an AGN, but their observational properties are not entirely consistent with those of standard radio galaxy populations. In the present work we aim at a better understanding of the radio spectra of such sources and ultimately of the nature of AGNs at sub-mJy flux levels. We used the ATCA to get multi-frequency (4.8, 8.6 and 19 GHz) quasi-simultaneous observations for a representative sub-sample of ATESP radio sources associated with early-type galaxies (26 objects with S>0.6 mJy). This can give us insight into the accretion/radiative mechanism that is at work, since different regimes display different spectral signatures in the radio domain. From the analysis of the radio spectra, we find that our sources are most probably jet-dominated systems. ADAF models are ruled out by the high frequency data, while ADAF+jet scenarios are still consistent with flat/moderately inverted-spectrum sources, but are not required to explain the data. We compared our sample with high (>20 GHz) frequency selected surveys, finding spectral properties very similar to the ones of much brighter (S>500 mJy) radio galaxies extracted from the Massardi et al. (2008) sample. Linear sizes of ATESP 5 GHz sources associated with early type galaxies are also often consistent with the ones of brighter B2 and 3C radio galaxies, with possibly a very compact component that could be associated at least in part to (obscured) radio-quiet quasar-like objects and/or low power BL Lacs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.