Abstract

Ataxia–oculomotor apraxia 1 (AOA1) is an autosomal recessive neurodegenerative disease that is reminiscent of ataxia–telangiectasia (A–T). AOA1 is caused by mutations in the gene encoding aprataxin, a protein whose physiological function is currently unknown. We report here that, in contrast to A–T, AOA1 cell lines exhibit neither radioresistant DNA synthesis nor a reduced ability to phosphorylate downstream targets of ATM following DNA damage, suggesting that AOA1 lacks the cell cycle checkpoint defects that are characteristic of A–T. In addition, AOA1 primary fibroblasts exhibit only mild sensitivity to ionising radiation, hydrogen peroxide, and methyl methanesulphonate (MMS). Strikingly, however, aprataxin physically interacts in vitro and in vivo with the DNA strand break repair proteins XRCC1 and XRCC4. Aprataxin possesses a divergent forkhead associated (FHA) domain that closely resembles the FHA domain present in polynucleotide kinase, and appears to mediate the interactions with CK2-phosphorylated XRCC1 and XRCC4 through this domain. Aprataxin is therefore physically associated with both the DNA single-strand and double-strand break repair machinery, raising the possibility that AOA1 is a novel DNA damage response-defective disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.