Abstract

We solve the asymptotic Plateau problem in every Gromov hyperbolic Hadamard manifold (X,g) with bounded geometry. That is, we prove existence of complete (possibly singular) k-dimensional area minimizing surfaces in X with prescribed boundary data at infinity, for a large class of admissible limit sets and for all $2 \le k < dim X$ . The result also holds with respect to any riemannian metric $\tilde g$ on X which is lipschitz equivalent to g.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.