Abstract

Jobs arriving over time must be non-preemptively processed on one of m parallel machines, each running at its own speed, so as to minimize a weighted sum of the job completion times. In this on-line environment, the processing requirement and weight of a job are not known before the job arrives. The Weighted Shortest Processing Requirement (WSPR) heuristic is a simple extension of the well known WSPT heuristic, which is optimal for the single machine problem without release dates. According to WSPR, whenever a machine completes a job, the next job assigned to it is the one with the least ratio of processing requirement to weight among all jobs available for processing at this point in time. We analyze the performance of this heuristic and prove that its asymptotic competitive ratio is one for all instances with bounded job processing requirements and weights. This implies that the WSPR algorithm generates a solution whose relative error approaches zero as the number of jobs increases. Our proof does not require any probabilistic assumption on the job parameters and relies extensively on properties of optimal solutions to a single machine relaxation of the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.