Abstract
Motivated by the asymptotic estimates and Hasse principle for multidimensional Waring's problem via the circle method, we prove for the first time that the corresponding singular series is bounded below by an absolute positive constant without any nonsingular local solubility assumption. The number of variables we need is near-optimal. By proving a more general uniform density result over certain complete discrete valuation rings with finite residue fields, we also establish uniform lower bounds for both singular series and singular integral in Fq[t]. We thus obtain asymptotic formulas and the Hasse principle for multidimensional Waring's problem in Fq[t] via a variant of the circle method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.