Abstract
Abstract The Kirchhoff model is derived from the vibration problem of stretchable strings. This article focuses on the long-time dynamics of a class of higher-order coupled Kirchhoff systems with nonlinear strong damping. The existence and uniqueness of the solutions of these equations in different spaces are proved by prior estimation and the Faedo-Galerkin method. Subsequently, the family of global attractors of these problems is proved using the compactness theorem. In this article, we systematically propose the definition and proof process of the family of global attractors and enrich the related conclusions of higher-order coupled Kirchhoff models. The conclusions lay a theoretical foundation for future practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.