Abstract
The purpose of this paper is to study the asymptotic behavior of the solutions of certain type of differential inclusions posed in Banach spaces. In particular, we obtain the abstract result on the asymptotic behavior of the solution of the boundary value problem { u t − Δ p ( u ) + | u | γ − 1 u = f on ] 0 , ∞ [ × Ω , − ∂ u ∂ η ∈ β ( u ) on [ 0 , ∞ [ × ∂ Ω , u ( 0 , x ) = u 0 ( x ) in Ω , where Ω is a bounded open domain in R n with smooth boundary ∂ Ω, f ( t , x ) is a given L 1 -function on ] 0 , ∞ [ × Ω , γ ⩾ 1 and 1 ⩽ p < ∞ . Δ p represents the p-Laplacian operator, ∂ ∂ η is the associated Neumann boundary operator and β a maximal monotone graph in R × R with 0 ∈ β ( 0 ) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.