Abstract

Insulin resistance is an important feature of type 2 diabetes. Ectoenzyme nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin signaling, and a recent meta-analysis reported a nominal association between the Q allele in the K121Q (rs1044498) single nucleotide polymorphism in its gene ENPP1 and type 2 diabetes. OBJECTIVE AND INTERVENTION: We examined the impact of this polymorphism on diabetes incidence as well as insulin secretion and sensitivity at baseline and after treatment with a lifestyle intervention or metformin vs. placebo in the Diabetes Prevention Program (DPP). DESIGN, SETTING, PARTICIPANTS, AND OUTCOME: We genotyped ENPP1 K121Q in 3548 DPP participants and performed Cox regression analyses using genotype, intervention, and interactions as predictors of diabetes incidence. Fasting glucose and glycated hemoglobin were higher in QQ homozygotes at baseline (P < 0.001 for both). There was a significant interaction between genotype at rs1044498 and intervention under the dominant model (P = 0.03). In analyses stratified by treatment arm, a positive association with diabetes incidence was found in Q allele carriers compared to KK homozygotes [hazard ratio (HR), 1.38; 95% confidence interval (CI), 1.08-1.76; P = 0.009] in the placebo arm (n = 996). Lifestyle modification eliminated this increased risk. These findings persisted after adjustment for body mass index and race/ethnicity. Association of ENPP1 K121Q genotype with diabetes incidence under the additive and recessive genetic models showed consistent trends [HR, 1.10 (95% CI, 0.99-1.23), P = 0.08; and HR, 1.16 (95% CI, 0.92-1.45), P = 0.20, respectively] but did not reach statistical significance. ENPP1 K121Q is associated with increased diabetes incidence; the DPP lifestyle intervention eliminates this increased risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.