Abstract
Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis (MTB), was originally identified as an immuno-dominant antigen and later found to be a major membrane protein. In vitro studies show that Hsp16.3 exists as nonamers and undergoes dynamic dissociation/re-association equilibrium in solutions. Nevertheless, neither the details nor the physiological implications of the presence of Hsp16.3 in the plasma membrane have been studied. In this study, we demonstrated that the purified Hsp16.3 proteins were able to interact with the MTB plasma membrane in a specific and reversible manner, suggesting that there might be subunit exchange between membrane-bound Hsp16.3 and soluble Hsp16.3 oligomers. The dissociation of Hsp16.3 oligomers appears to be a prerequisite for its membrane binding, which is interesting in view that the dissociation of small heat shock protein oligomers was also found to be necessary for it to bind denaturing substrate proteins. Furthermore, the oligomeric structure of Hsp16.3 seems to be more dynamic and flexible when incubating with the mycobacterium lipids. The physiological implications of these observations for Hsp16.3, and small heat shock proteins in general, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.