Abstract

This work evaluates the suitability of biphasic calcium phosphate (BCP) granules (β-TCP/HA 70:30) as potential carriers for cell-guided bone therapy. The BCP granules were obtained by synthesis in the presence of wax, thermal treatment, crushing and sieving and characterized by scanning electron microscopy (SEM), X-ray diffraction and Fourier transform infrared spectroscopy. The cytocompatibility of the BCP granules was confirmed by a multiparametric cytotoxicity assay. SEM analysis showed human bone cell adhesion and migration after seeding onto the material. Rat subcutaneous xenogeneic grafting of granules associated to human bone cells revealed a more accentuated moderate chronic inflammatory infiltrate, without signs of a strong xenoreactivity. Histomorphometrical analysis of bone repair of defects in rat skulls (∅ = 5 mm) has shown that bone cell associated-BCP and autograft promoted a two- and threefold increase, respectively, on new bone formation after 45 days, as compared to BCP alone and blood clot. The increase in bone repair supports the suitability the biocompatible (70:30) BCP granules as injectable and mouldable scaffolds for human cells in bone bioengineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.