Abstract

Background: Polymorphisms in DNA damage repair genes are important determinants for cancer susceptibility, clinical phenotype diversity, and therapy. However, their relationship with lung cancer remains unclear. This study aimed to investigate the role of DNA damage repair gene polymorphisms in the risk of lung cancer.Methods: The matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectroscopy-based genotyping system was used to genotype 601 individuals (200 lung cancer patients and 401 age- and sex-matched healthy controls) for polymorphisms in excision repair cross-complementing group 1 (ERCC1) and ERCC5 genes.Results: The ERCC5 rs4771436 GG genotype, recessive model (GG vs. GT+TT), and the ERCC5 rs1047768 recessive model (CC vs. CT+TT) were associated with significantly increased risks of lung cancer (P=0.029, P=0.014, and P=0.044, respectively), especially in men and individuals aged 60 years or younger.Conclusion: ERCC5 rs4771436 and rs1047768 genotypes were associated with an increased risk of lung cancer, suggesting that polymorphisms in DNA repair genes are significantly related to the risk of lung cancer, and play an important role in the occurrence of lung cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call