Abstract

Drought has become an important factor affecting the environment and socio-economic sustainable development in northern China due to climate change. This study utilized the Standardized Precipitation Index (SPI) as a drought metric to investigate the correlation between drought characteristics and different grades of precipitation and rain days. The analysis was based on a long-term time series of precipitation data obtained from 116 meteorological stations located in Inner Mongolia, spanning 1960 to 2019. To achieve the objectives of the current research, the daily precipitation was categorized into four grades based on the “24-h Precipitation Classification Standard”, and the frequency of rain days for each grade was determined. Subsequently, the SPI was calculated for 1 and 12 months, enabling the identification of drought events. The results revealed pronounced spatiotemporal regional variations and complexities in the dry–wet climatic patterns of Inner Mongolia, with significant decreases in precipitation emerging as the primary driver of drought occurrences. Approximately 6% of the entire study period experienced short-term drought, while long-term drought periods ranged from 23% to 38%. Regarding multi-year trends, precipitation exhibited a weak increasing trend, while rain days exhibited a weak decreasing trend. Drought exhibited an alleviating trend, with 92% of stations displaying coefficients > 0 for SPI_Month and over 62% of stations displaying coefficients > 0 for SPI_Year. At the monthly scale, drought was most correlated with light rainfall trends and least correlated with moderate rainfall trends. At the annual scale, drought was relatively highly correlated with moderate and heavy rainfall distributions but poorly correlated with light rainfall. The results suggested that achieving the precise monitoring and mitigation of drought disasters in Inner Mongolia in the future will require a combined analysis of indicators, including agricultural drought, hydrological drought, and socio-economic drought. Such an approach will enable a comprehensive analysis of drought characteristics under different underlying surface conditions in Inner Mongolia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.